Emily Foster's Fox

As part of the University of North Carolina BIOL222 class, Dr. Catherine Kehl asked her students to “use matplotlib.pyplot to make art.” BIOL222 is Introduction to Programming, aimed at students with no programming background. The emphasis is on practical, hands-on active learning.

The students completed the assignment with festive enthusiasm around Halloween. Here are some great examples:

Harris Davis showed an affinity for pumpkins, opting to go 3D! 3D Pumpkin

# get library for 3d plotting from mpl_toolkits.mplot3d import Axes3D # make a pumpkin :) rho = np.linspace(0, 3 * np.pi, 32) theta, phi = np.meshgrid(rho, rho) r, R = 0.5, 0.5 X = (R + r * np.cos(phi)) * np.cos(theta) Y = (R + r * np.cos(phi)) * np.sin(theta) Z = r * np.sin(phi) # make the stem theta1 = np.linspace(0, 2 * np.pi, 90) r1 = np.linspace(0, 3, 50) T1, R1 = np.meshgrid(theta1, r1) X1 = R1 * 0.5 * np.sin(T1) Y1 = R1 * 0.5 * np.cos(T1) Z1 = -(np.sqrt(X1**2 + Y1**2) - 0.7) Z1[Z1 < 0.3] = np.nan Z1[Z1 > 0.7] = np.nan # Display the pumpkin & stem fig = plt.figure() ax = fig.gca(projection="3d") ax.set_xlim3d(-1, 1) ax.set_ylim3d(-1, 1) ax.set_zlim3d(-1, 1) ax.plot_surface(X, Y, Z, color="tab:orange", rstride=1, cstride=1) ax.plot_surface(X1, Y1, Z1, color="tab:green", rstride=1, cstride=1) plt.show()

Bryce Desantis stuck to the biological theme and demonstrated fractal art. Bryce Fern

import numpy as np import matplotlib.pyplot as plt # Barnsley's Fern - Fractal; en.wikipedia.org/wiki/Barnsley_… # functions for each part of fern: # stem def stem(x, y): return (0, 0.16 * y) # smaller leaflets def smallLeaf(x, y): return (0.85 * x + 0.04 * y, -0.04 * x + 0.85 * y + 1.6) # large left leaflets def leftLarge(x, y): return (0.2 * x - 0.26 * y, 0.23 * x + 0.22 * y + 1.6) # large right leftlets def rightLarge(x, y): return (-0.15 * x + 0.28 * y, 0.26 * x + 0.24 * y + 0.44) componentFunctions = [stem, smallLeaf, leftLarge, rightLarge] # number of data points and frequencies for parts of fern generated: # lists with all 75000 datapoints datapoints = 75000 x, y = 0, 0 datapointsX = [] datapointsY = [] # For 75,000 datapoints for n in range(datapoints): FrequencyFunction = np.random.choice(componentFunctions, p=[0.01, 0.85, 0.07, 0.07]) x, y = FrequencyFunction(x, y) datapointsX.append(x) datapointsY.append(y) # Scatter plot & scaled down to 0.1 to show more definition: plt.scatter(datapointsX, datapointsY, s=0.1, color="g") # Title of Figure plt.title("Barnsley's Fern - Assignment 3") # Changing background color ax = plt.axes() ax.set_facecolor("#d8d7bf")

Grace Bell got a little trippy with this rotationally semetric art. It’s pretty cool how she captured mouse events. It reminds us of a flower. What do you see? Rotations

import matplotlib.pyplot as plt from matplotlib.tri import Triangulation from matplotlib.patches import Polygon import numpy as np # I found this sample code online and manipulated it to make the art piece! # was interested in because it combined what we used for functions as well as what we used for plotting with (x,y) def update_polygon(tri): if tri == -1: points = [0, 0, 0] else: points = triang.triangles[tri] xs = triang.x[points] ys = triang.y[points] polygon.set_xy(np.column_stack([xs, ys])) def on_mouse_move(event): if event.inaxes is None: tri = -1 else: tri = trifinder(event.xdata, event.ydata) update_polygon(tri) ax.set_title(f"In triangle {tri}") event.canvas.draw() # this is the info that creates the angles n_angles = 14 n_radii = 7 min_radius = 0.1 # the radius of the middle circle can move with this variable radii = np.linspace(min_radius, 0.95, n_radii) angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False) angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1) angles[:, 1::2] += np.pi / n_angles x = (radii * np.cos(angles)).flatten() y = (radii * np.sin(angles)).flatten() triang = Triangulation(x, y) triang.set_mask( np.hypot(x[triang.triangles].mean(axis=1), y[triang.triangles].mean(axis=1)) < min_radius ) trifinder = triang.get_trifinder() fig, ax = plt.subplots(subplot_kw={"aspect": "equal"}) ax.triplot( triang, "y+-" ) # made the color of the plot yellow and there are "+" for the data points but you can't really see them because of the lines crossing polygon = Polygon([[0, 0], [0, 0]], facecolor="y") update_polygon(-1) ax.add_patch(polygon) fig.canvas.mpl_connect("motion_notify_event", on_mouse_move) plt.show()

As a bonus, did you like that fox in the banner? That was created (and well documented) by Emily Foster!

import numpy as np import matplotlib.pyplot as plt plt.axis("off") # head xhead = np.arange(-50, 50, 0.1) yhead = -0.007 * (xhead * xhead) + 100 plt.plot(xhead, yhead, "darkorange") # outer ears xearL = np.arange(-45.8, -9, 0.1) yearL = -0.08 * (xearL * xearL) - 4 * xearL + 70 xearR = np.arange(9, 45.8, 0.1) yearR = -0.08 * (xearR * xearR) + 4 * xearR + 70 plt.plot(xearL, yearL, "black") plt.plot(xearR, yearR, "black") # inner ears xinL = np.arange(-41.1, -13.7, 0.1) yinL = -0.08 * (xinL * xinL) - 4 * xinL + 59 xinR = np.arange(13.7, 41.1, 0.1) yinR = -0.08 * (xinR * xinR) + 4 * xinR + 59 plt.plot(xinL, yinL, "salmon") plt.plot(xinR, yinR, "salmon") # bottom of face xfaceL = np.arange(-49.6, -14, 0.1) xfaceR = np.arange(14, 49.3, 0.1) xfaceM = np.arange(-14, 14, 0.1) plt.plot(xfaceL, abs(xfaceL), "darkorange") plt.plot(xfaceR, abs(xfaceR), "darkorange") plt.plot(xfaceM, abs(xfaceM), "black") # nose xnose = np.arange(-14, 14, 0.1) ynose = -0.03 * (xnose * xnose) + 20 plt.plot(xnose, ynose, "black") # whiskers xwhiskR = [50, 70, 55, 70, 55, 70, 49.3] xwhiskL = [-50, -70, -55, -70, -55, -70, -49.3] ywhisk = [82.6, 85, 70, 65, 60, 45, 49.3] plt.plot(xwhiskR, ywhisk, "darkorange") plt.plot(xwhiskL, ywhisk, "darkorange") # eyes plt.plot(20, 60, color="black", marker="o", markersize=15) plt.plot(-20, 60, color="black", marker="o", markersize=15) plt.plot(22, 62, color="white", marker="o", markersize=6) plt.plot(-18, 62, color="white", marker="o", markersize=6)

We look forward to seeing these students continue in their plotting and scientific adventures!